
(合集)高二数学教案14篇
作为一位无私奉献的人民教师,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?以下是小编整理的高二数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高二数学教案 篇1平面向量共线的坐标表示
前提条件a=(x1,y1),b=(x2,y2),其中b≠0
结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线
[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;
(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()
(2)向量(2,3)与向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,则x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.
答案:73,0
向量共线的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的.方向相同还是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共线.
又=-2,∴,方向相反.
综上,与共线且方向相反.
向量共线的判定方法
(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.
[活学活用]
已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,
解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.
∴k=-13时,ka+b与a-3b平行且方向相反.
三点共线问题
[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;
(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点
共线?
[解](1)证明:∵=-=(4,8),
=-=(6,12),
∴=32,即与共线.
又∵与有公共点A,∴A,B,C三点共线.
(2)若A,B,C三点共线,则,共线,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有关三点共线问题的解题策略
(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;
(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.
高二数学教案 篇2教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的`过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意 ……此处隐藏13878个字……行交流,订正时说一说是怎样想的
(3)练习三十三4题,用方程解,独立计算。
(4)整理和复习5题
①先分组用不同方法解答
②引导学生进行比较
使学生明确:
用方程解应用题:用算术方法解应用题
1.未知数用字母表示,勃口列式。
1.未知数不参加列式。
2。根据题意找出数量间的相等
2.根据题里已知数和未知数间关系,引出含有未知数x的关系,引出含有末知数x的等式。的关系,确定解答步骤,再列式计算。
注意:用方程解应用题,得数不注明单位名称;而用算术方法解应用题,得数要注明单位名称。
今后题目中除指定解题方法以外,自己选择解题方法。
(5)练习三十三6题
订正时,引导学生分析、比较。
七、布置作业
练习三十三3、4题部分题,7、8题。
八、板书设计(略)
高二数学教案 篇14课题:命题
课时:001
课型:新授课
教学目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重点与难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学过程
一、复习回顾
引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?
二、新课教学
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点.
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
抽象、归纳:
1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1:判断下列语句是否为命题?
(1)空集是任何集合的子集.
(2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗?
(4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2.
(6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
2、命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
例2:指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的`。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
3、命题的分类
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
判断一个数学命题的真假方法:
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
(1)面积相等的两个三角形全等。
(2)负数的立方是负数。
(3)对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
三、巩固练习:
P4第2,3。
四、作业:
P8:习题1.1A组~第1题
五、教学反思
师生共同回忆本节的学习内容.
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“若P,则q”的形式.
4、如何判断真假命题.



![《角的初步认识》教案15篇[优选]](https://img.jihtu.com/upload/10661.jpg)